Self-Made Undergraduate STEAM

Rand Theater

The Rand Theater is the primary performance space that the UMass Amherst Theater Department uses for their large shows, with large amounts of seating and a full array of theatrical aspects including lights, sound, fly rails, removable stage pieces, and a scene shop directly behind it with large bay doors to move scenery back and forth. (Nicholas Calow)

A little while back, I had the pleasure to attend a party at the home of Christine and Sean Doherty in New Hampshire. Christine and Sean (http://www.pointnatural.com), by the way, have each taken a holist approach to science, and both have artistic backgrounds, hers visual, his musical.

While at the party, I was lucky enough to meet Nicholas (Nick) Calow (https://www.linkedin.com/in/ncalow), an undergraduate at UMass Amherst (UMass Amherst). We had a great, if brief, conversation about his academic program, one that he’s put together to address his own strengths and passions. To date, this blog has focused to a large extent on the needs and efforts of university faculty members with regard to arts integration in science teaching, and there was that one post about the few university programs that offer a STEAM focus [link here]. But what about all of those students at universities that don’t offer such programs? How can they negotiate academic programs that address STEAM? This interview with Nick will offer one example.

LD: Hey Nick! So tell me, what year are you at UMass Amherst?

NC: I’m currently a sophomore at UMass, but I expect to be there for five years instead of four because of my double major with Theater and Electrical Engineering.

LD: Okay, so what was behind your decision to do a 5-year double major? Another option, I imagine, would’ve been to do just a single major and maybe a master’s degree later.

NC: My decision came from working over the summer at the Commonwealth Shakespeare Company doing Twelfth Night in Boston Common (http://commshakes.org/). While working there, I saw the type of life theatrical electricians would live, and wanted a bit more than that. I’d already committed to being a theater major, but I figured that an electrical engineering degree on top of that would really help me in the field of design as well as operation. The field I would like to enter is known as stage automation, which is basically using mechanical means to move scenery and lights in a predictable manner, eliminating the human element of scenic manipulation. Since I’d like to design those systems, an engineering degree on top of a theatrical one would be a huge benefit.

umass m5

M5 is a study and work space for electrical engineering students at UMass Amherst that Nick has used a few times. It has a variety of useful tools and experts in their use who support the students. (Nicholas Calow)

LD: I’ve attended those performances on the Common – wonderful stuff. So your particular intersection of art and science arose from experience in professional theater – I think the real world is often less siloed than the academic world. Is there a typical preparation for stage automation? Would people working in that field have typically have completed a double major similar to yours

NC:I don’t know many people in the field, but from what I understand many people who are automation techs come from an engineering or a theatrical background, rarely both. A cursory Google search found me this little blurb about it though: http://getinmedia.com/careers/stage-automation-technician. And my plan actually is to design automation systems, so that’s more advanced than being a tech.

LD: Are there logistical challenges that come with this pair of majors – schedule conflicts or expectations of the two departments that don’t fit well together?

NC: There is a large time commitment for both majors, but in very different ways. For engineering, I will need to be doing more homework and tests than hands-on projects, and with theater it is the opposite. When I get higher into both programs, finding enough time for it all will become more of a challenge. Another annoying aspect is the way both majors schedule their classes. With engineering, it is very regular, twice or three times a week for an hour or so, and labs on another day at another time. For theater, there is usually only one or two class times a week, but those times are much longer, and can interfere with the other classes I am taking. As with most college students, I have to be very careful when I make my schedule that nothing overlaps.

LD: So far, have you found any ways to use knowledge or ways of learning/thinking/understanding from one major in courses for the other major? 

NC: I haven’t started my engineering major just quite yet, but I can imagine in my lighting and set design classes that knowing advanced math or physics would be of great use. Also, since I’m entering the major at a later date than most would have, I have developed better study skills and time management that some freshmen might not have, which will come in handy once I start being really busy with both majors at the same time.

LD: Do you anticipate doing a project for credit that combines both fields? Is there an option to create your own interdisciplinary directed study or research course? If you did create such a course, would the course have to exist in one department only? Could you have an advisor from each department for that type of course? 

NC: In a way, I am already doing something like that. Right now, I am currently working on a project in the theater department under my advisor to utilize an old motor down in the stage trap room to act as a usable piece of technology. Using a bunch of programming that I will be doing myself, my goal is to get the motor to a point where you can interface your laptop computer with it and be able to control every aspect of it; when it starts, how fast it goes, its acceleration, when it stops, and so on. I would imagine that since it’s directed at the stage and solely for the stage, any projects I would do would be based in the theater department, with occasional help by the engineering department.

LD: And what will that motor be used for?

NC: The idea is to use the motor in conjunction with the stage to move large objects through various mechanical means. It could be set under the stage to turn a large rotating platform, it could be attached to a winch to pull a heavy cable on command, it could be used with a pulley to move something across the stage, and so on. After I complete this project, I plan to continue creating a toolbox of sorts for the theater department, learning and improving as I go.

LD: Do you know any other undergraduates who are bridging the divide between art/design and science/engineering/math in their studies?

NC: I’ve found that people who do bridge the gap between art and science are the exception, not the rule. There may be some in assorted examples, but people tend to be in either one or the other, not both. There can be many benefits to what I’m doing with it, as it is guiding and shaping me as I go along, but it also is taking me an extra year to graduate.

LD: Thanks, Nick! It’s been a real pleasure. Please keep me updated on your progress so that we may share it here.

theater

Bowker Auditorium is one of the places where Nick frequently designs with the UMass Theatre Guild. It is the space where they put on their larger shows. (Nicholas Calow)

Does the Art Have to Be Good, Revisited

So, I’ve been reflecting on my use of the arts to teach biology over the past two years.

My goal is for students to learn the science, not for them to become good artists of any sort. And I can’t teach the arts or design to them beyond the ways in which those arts or design are part of my own training.

"Max contrast Brain MRI 131058 rgbce" by Nevit Dilmen (talk) - Own work.

“Max contrast Brain MRI 131058 rgbce” by Nevit Dilmen (talk) – Own work.

I like the use of the arts in learning. The art that’s created doesn’t have to be good art because it isn’t ever presented. For example, students can act out transport through xylem and phloem (the vascular tissue of plants), bring props, include music that’s meaningful to them, and use movement and each other to embody a process that is normally challenging to understand. New, smart scientific questions get asked and answered through experimentation using movement. There’s joy in this learning. And rigor. Shouldn’t these two always go together? If a dance or theatre professor co-taught this exercise, it might be presentable, but otherwise it’s not. Other examples of this type of learning include having students write haikus to gain experience expressing Newtonian physics in their own words, or scientific illustration to encourage close observation.

When the art is integral to the presentation of science, such as the theatre and design aspects of conference-style presentations or scientific presentations to a general audience, student presentations can be greatly improved with the help of some outside resources (acting for science videos – https://stemtosteamihe.wordpress.com/2013/05/11/act-like-you-mean-it/, Edward Tufte’s books – http://www.edwardtufte.com/tufte/).

Aside from scientific presentations, I’m not so sure that I like the use of creative projects as a way to express science learning or communicate science when some of the students lack an arts/design background. The students with formal artistic training can produce really great things, pieces that show rigor from both a scientific and artistic perspective. Those who don’t have that background tend to create pieces that are weak in both fields, suggesting that the science hasn’t been learned or explored sufficiently. Perhaps that’s because the challenge of creating real art is too great and therefore distracting. Creative assignments for those students may do them a real disservice. They could have spent that effort building science skills instead.

Those are my musings for today. Let me know if you think I should change my mind!

 

Artistic Bacteria

Welcome to my first guest post!  Today we’re hearing from Dr. Amy Sprenkle (https://www.salemstate.edu/academics/schools/1046.php?id=736) from my home institution, Salem State University (https://www.salemstate.edu).

 

***************************************************************************************************************
Created with Nokia Smart Cam
The annual Darwin Festival (http://w3.salemstate.edu/~pkelly/darwin/) coincides with Valentine’s day each year, and I usually invite my microbiology students to create ‘valentines’ by using bacterial cultures that have a macroscopic appearance that is opaque and colorful after growing on an agar plate. This year we shared them at the Darwin Festival.

“But why did you do it?” asked Lisa.

I could come up with many scientific reasons why allowing the students to ‘paint’ with bacteria is a good idea; reminders of the aspects of good aseptic technique, or the study of the interaction of the different cultures as they grow on the plate are just two, but I think the most important reason is that it helps to demystify bacteria, and perhaps break down some ‘germophobe’ walls that have been built in some individuals since childhood. As a microbiologist, I consider germophobes to have a certain lack of intellectual curiosity, and a lack of openness to new ideas, especially in microbiology! Created with Nokia Smart Cam

 

Created with Nokia Smart Cam

Thinking of bacteria as a medium of art, rather than germs to be feared and removed at all costs, makes manipulating them a lot less scary. Not being assessed on the success of the project also makes it more fun and less threatening

Created with Nokia Smart Cam

(but many students don’t bother to do the valentine because it’s not required). The best thing in being released from the fear of manipulating bacteria is that it gets one thinking about the ways in which we use microbes to our benefit; in food production and agriculture, bioremediation, biotechnology, and most importantly as a part of our resident microbiota that is so crucial to our health.

Created with Nokia Smart CamFinally, the delayed gratification that comes with making light ‘brush strokes’ with a sterile toothpick to place microscopic cells on the growth medium, and then to come in the next day and see that your sketch idea has bloomed into color and completion is one that applies to laboratory science and experimentation in general. Just finding out if you like the fine motor manipulation, the suspense of the wait, and the excitement and surprise of the result is a good thing to learn early in career exploration, no? You can find much more of the same on the web here: http://www.microbialart.com/more/

Created with Nokia Smart Cam

 

 

 

BioMusic

Male_Bonobo_Lola_ya_Bonobo_2008

Male bonobo (Pan paniscus) at Lola ya Bonobo, Democratic Republic of Congo, 2008

The term BioMusic seems to have many different meanings. At least a couple of them represent an authentic connection between art and science, and lend themselves to teaching and research at the university level. The research in this area seems to bring together biologists or doctors, musicians, and computer scientists.

One relates to the evolution of a musical sense as recently exemplified in research on bonobos (http://www.reuters.com/article/2014/02/15/us-science-animals-rythym-idUSBREA1E0ZL20140215) by Dr. Patricia Gray (https://performingarts.uncg.edu/mri/research-areas/biomusic) at the University of North Carolina, Greensboro (http://www.uncg.edu). This research involved an undergraduate research assistant. Other studies relate to whales songs and bird songs, and rhythmic abilities in parrots (http://www.newscientist.com/article/dn17065-dancing-parrots-could-help-explain-evolution-of-rhythm.html#.UwJ7TRayfzI) and sea lions (http://news.ucsc.edu/2013/04/sea-lion-beat.html).

The other meaning relates to the sonification of human biological data including heartbeat, brainwaves, respiration rate, or protein patterns or genetic traits. There’s even an ap for that : http://biobeats.com/our-story/. These topics related to health and biofeedback, as well as biological diversity.

Serious Space Games

Mrs. Muriel Riester, Librarian at the International Space University (http://www.isunet.edu)  has assembled an interesting list of space-related scientific Serious Games (http://isulibrary.isunet.edu/opac/doc_num.php?explnum_id=616). Video games integrate technology, the visual arts, design, and story-telling, and can center on STEM content. Students can learn about STEM disciplines through playing these games, and can learn even more by developing them!

Screenshot from the open-source space simulator Vegastrike.

Screenshot from the open-source space simulator Vegastrike.

I’ve got my ion you, baby.

When you think about music videos, you’re reminded of Orgo class, right? Dr. Neil Garg (http://www.chem.ucla.edu/dept/Faculty/garg/Garg_Group/Home.html) at UCLA has a  very popular Organic Chemistry class that includes a very popular extra-credit music video assignment. Students create ringtones, too. Despite the reasonable final exam mean of 72% last semester, the class fills to capacity (http://www.chem.ucla.edu/14D-S13/Home.html).

Minievol

Music with Science, Evolucio Radio (Marco A. Diaz)

Students are unable to get the catchy rhymes about reactions out of their heads, and they’re likely to remember these aspects of Organic for the rest of their lives. Lyrics are memorable because music is a multi-sensory stimulus that includes rhythm, rhyme, alliteration and melody. It also has emotional and personal components that reinforce long-term recall (http://www.bbc.co.uk/news/magazine-17105759).  Students learn about teamwork – a workforce preparedness goal, animation, and audio and video editing. Hop over to YouTube and boogie to even more awesome chemistry tunes.

With the Greatest of Ease!

Flying Trapeze (Courtesy of Fearless Flyers Academy)

Flying Trapeze (Courtesy of Fearless Flyers Academy)

So, today I got up my nerve. After many months of encouragement from a friend, I flew. On the flying trapeze. In just one lesson they taught me to hang from my knees twenty-five feet in the air. I was even caught twice by the remarkable Rob Borroughs, who can apparently catch a novice no matter how many crazy things she does. I offer gratitude to Owner/Head Coach Don Dinh (Mechanical and Aerospace Engineer) who patiently guided me through the steps of the tricks, and to Head Coach Lam Dinh (Computer Science) who encouraged me and held my belt as I leaned off the platform to grasp ahold of that swing that seemed to be so far out into the blue.

But, of course, the whole time I was really thinking about STEAM. As the Owner/Head Coach Ally Dihn of the Fearless Flyers Academy (http://www.fearlessflyersacademy.com) said to me today, “The trapeze is all physics.”

In fact, Alastair Pilgrim of Red Hands Flying Trapeze (http://www.red-hands.co.uk) has written a nice piece entitled, The Physics of Flying Trapeze (http://www.flying-trapeze.com/The-Physics-of-Flying-Trapeze/). He talks about kinetic and potential energy, calculating maximum speed, and time period of the swing. And that’s just the first chapter.

So, physics professors, check out a flying school near you. Fearless Flyers Academy is in Salem, Massachusetts for just eight more days this season – but also due back next August.  There are flying academies all over the world.  Find one in your neighborhood and expose your students to the exciting world of physics through trapeze!

Virtual STEAM

The field of scientific visualization represents an authentic connection between the arts/design and the STEM disciplines.  Daniel Keefe (http://www-users.cs.umn.edu/~keefe/dfk_iweb/Home.html) and David Laidlaw (http://cs.brown.edu/~dhl/)  recently reported on what they’ve learned through the their teaching in the field of Virtual Reality (http://ivlab.cs.umn.edu/papers/Keefe-2013-VR-Design-for-STEAM.pdf). VR is advanced visualization technology that has broad appeal for undergraduates of all disciplines.

Stenger with VPL gear. Nicole Stenger is a French-born, American artist and pioneer in Virtual Reality

Nicole Stenger with VPL gear. Stenger is a French-born, American artist and pioneer in Virtual Reality.

The authors discovered that when art and STEM students worked together on Virtual Reality data visualization projects, they each began to develop some expertise in the other’s discipline. This exploration improved cross-disciplinary communication, facilitating the collaboration.

The authors incorporated important elements of art classes into their teaching. For one, they used a critique-style discussion of work-in-progress. Scientists knowledgeable about the data joined in. They found these classroom critiques so useful that they brought this teaching/learning technique into other computer science courses. (I could see how art-style classroom critique could be useful in other STEM courses as well.) Both groups of students faced the additional challenge of effective communication with the scientists whose research they were representing. In life-after-university, this third party could represent a client or additional collaborator.

They also emphasized the importance of “sketching” prior to programming. Sketching took various forms including paper & pencil, a series of concept sketches using Adobe Illustrator, acting out possible user experiences, short films, sculptures, and prototyping in the CavePainting virtual reality system. Data display environments help to align sketches with the reality of the data.

This paper causes me to reflect on my own teaching and on the importance of reflection for learning. It’s important to slow down, develop lots of ideas, get lots of feedback, and learn how to understand each other.

The paper described here was published in the refereed proceedings of the 5th International Conference on Virtual, Augmented and Mixed Reality 2013 which was held as part of the 15th International Conference on Human-Computer Interaction.

STEM is funny. No, really.

sciencevsart

Science vs. Art (courtesy of the artist)

When I saw this poster, Science vs. Art (click on the image to expand), by Rosemary Mosco (http://www.rosemarymosco.com) I knew I needed to write about her work!  Ms. Mosco is a field naturalist who creates charming, informative and funny comics, charts, posters and video games about nature.

Even if your students aren’t great artists like Ms. Mosco, they can probably make a comic, or illustrated poster or chart, about almost any STEM topic. Through the creative process, students will explore STEM ideas and concepts, in many cases work collaboratively, and express what they have learned. Their creations can also be shared with a general audience, advancing learning beyond the classroom.  Ms. Mosco’s work can provide them with inspiration!

Sculpture and Biology: Birds of a Feather

Greater Bird of Paradise.Diana Beltrán Herrera. (photo courtesy of the artist)

Greater Bird of Paradise. Diana Beltrán Herrera. (photo courtesy of the artist)

In an earlier post, I wrote about the use of sculpture to explore the sub-microscopic subject of protein folding (https://stemtosteamihe.wordpress.com/2013/03/31/the-use-of-sculpture-to-teach-protein-folding/) . As you might imagine, sculpture can be used in the investigation of macro-scale subjects as well.

The artist Diana Beltrán Herrera (http://www.dianabeltranherrera.com) creates breathtaking, exquisitely-detailed paper sculptures of birds and other wildlife. The birds in her Disecciones series are partially transparent, allowing a view of the organs inside.  Her sculptures demonstrate a detailed understanding of morphology, anatomy, and animal behavior. They also carry a message about appreciation of the natural world that surrounds us no matter where we live (http://blogs.smithsonianmag.com/artscience/2013/09/diana-beltran-herreras-flock-of-paper-birds/).

Students who are asked to create sculptures of animals can learn about morphology, anatomy, and behavior, necessarily becoming experts on their subjects. Perhaps they will even come to care about the animals they sculpt!  We can hope, right?

Great Grey Shrike. paper cut. 2012. Diana Beltrán Herrera. (photo courtesy of the artist.)

Great Grey Shrike. Cut Paper. 2012. Diana Beltrán Herrera. (photo courtesy of the artist)

P.S. To see another form of visual art that addresses similar STEM topics click through to extraordinary textile art at https://stemtosteamihe.wordpress.com/2013/05/11/a-yarn-about-anatomy-2/

P.P. S. Also notable, paper is the material of choice for the costumes and sculptures used by Isabella Roselli in her series for the Sundance Channel.  She and Andy Byers, her costume designer, selected paper for its low cost and relative ease of use, among other artistic considerations (http://www.bradfordshellhammer.com/interviews/2010/01/andy_byers.htmlhttps://stemtosteamihe.wordpress.com/2013/08/04/oh-isabella/). Maybe these folks have identified a good material for our use in STEM teaching through the arts.